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Abstract. A complete analogue of Kolmogorov’s perturbation algorithm in classical mechanics
is presented for perturbations of self-adjoint operators. The resulting perturbation theory is
different from the usual Rayleigh–Schrödinger (or Kato–Rellich) perturbation theory.

1. Introduction

Despite the fact that quantum mechanics became necessary because classical mechanics
could no longer explain the observed phenomena and despite the apparent difference
between the two theories, the methods used and the results obtained in classical mechanics
have always been an inspiration for the search of similar methods and results in quantum
mechanics (e.g. Ehrenfest theorems, adiabatic theorems, etc).

Nevertheless, it seemed that the realm of the perturbation theory was somehow an
exception in that the standard Rayleigh–Schrödinger perturbation theory, developed for
linear operators (see e.g. [1]), did not seem to bear any resemblance to the usual perturbation
theory as first developed by Poincaré [2] and commonly used in classical mechanics. For
the first time Kummer [3] (see also [4, 5]) constructed a quantum mechanical perturbation
theory in strict analogy with the normal form approach to perturbations in classical
mechanics. A similar construction was given by Ali [6] and for the specific example
of the anharmonic oscillator by Eckhardt [7]. In a recent paper [8] we have shown
that this resemblance between the classical theory and the quantum perturbation theory
can be extended to include the method of averaging. In fact, by describing quantum
mechanics as a Hamiltonian system, where the Hilbert space of states is viewed as an
infinite-dimensional real symplectic manifold, the usual quantum mechanical perturbation
theory can be formulated as the ‘classical perturbation theory’ with canonical (i.e. unitary)
transformations which are constructed with the help of the averaging method.

Once a quantum mechanical version of the averaging method is available, however,
it may be used to construct a quantum analogue of Kolmogorov’s perturbation method
[9] which was designed to overcome the problem of small divisors and which is used in
the proof of the famous KAM theorem [10, 11]. That is what is done in this paper: the
construction of a quantum mechanical version of Kolmogorov’s perturbation algorithm.

Kolmogorov’s algorithm in classical mechanics consists of an iterative procedure which
at each iteration requires the solution of certain differential equations (see equation (19))
which is constructed with the averaging method. Formulating the averaging method in a
purely geometric way enables us to write down its quantum analogue, i.e. its analogue for
self-adjoint operators. The iterative steps can also be formulated for operators in strict
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analogy with the classical situation. In this way one obtains a perturbation algorithm
suitable for self-adjoint operators. It should be emphasized that the analogy rests solely
on the structure of the equations and its geometrical content and does not make any use of
any classical↔quantum relation such as, for example quantization or semi-classical limit.

The paper is organized as follows. Since the quantum analogue is modelled in strict
accordance with the classical method we give a review of the latter in section 2. This is a
more cursory exhibition of the classical theory and is akin to a proof of the KAM theorem
given by Benettinet al [12]. The main purpose of section 2 is to motivate the origin of
certain similar constructions needed in the quantum version. Hence, most aspects of the
classical theory which are not needed in the quantum version will be treated only marginally
or not at all. This applies in particular to all conditions necessary for convergence. For a
complete and readable account of the classical theory we refer the reader to [12].

In section 3 we develop the quantum version by first exhibiting the quantum analogue of
the method of averaging in section 3.1 and then using this to build the perturbation algorithm
in section 3.2. In section 3.3 it is then shown how this algorithm serves to approximate
eigenvalues and eigenvectors of the perturbed operator. If the unperturbed operator has
a purely discrete spectrum these results may be formulated in terms of the unperturbed
eigenvalues and eigenvectors which is done in section 3.4. Section 3.5 contains a summary
of the algorithm. In the special case of an unperturbed operator with purely discrete and
non-degenerate spectrum the expressions simplify considerably and are given in section 3.6.
In section 4 we apply the new theory to several examples which show that the quantum
perturbation method when constructed is different from, and presumably better than, the
usual Rayleigh–Schrödinger theory. We hasten to add that the examples themselves are
not sufficient evidence for a considerable improvement over the standard theory. They
are meant to illustrate how the new method works and that it does indeed differ from the
standard theory. Section 5 contains a discussion of the method presented here, its relation
with pre-existing perturbation methods, and several open questions which arise from it.

This paper is an extended version of the results which where announced in [13]. For
symbolic and numerical calculations theMathematicapackage together with its NCAlgebra
routines was used.

2. Kolmogorov’s algorithm in classical mechanics

2.1. Generating functions, canonical transformations and averaging

We begin with some generalities about canonical transformations, their vector fields,
and their generating functions. LetM be a 2m-dimensional symplectic manifold whose
symplectic structure has an associated Poisson bracket

{·, ·} : C∞(M)× C∞(M)→ C∞(M) (1)

which allows us to define the following map for eachf ∈ C∞(M)

adf : C∞(M)→ C∞(M)
g 7→ adf (g) := {f, g}. (2)

Hence, we shall also use the language

f andg commute :⇔ adf (g) = {f, g} = 0 (3)
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which is conceptionally useful in view of the quantum mechanical version later. For later
use we also define

(adf )
p(g) := adf ◦ adf ◦ . . . ◦ adf︸ ︷︷ ︸

p times

(g) = {f, {f, . . . , {f︸ ︷︷ ︸
p times

, g} . . .}. (4)

For any smooth mapϕ : M → M (transformation) we define its pull-back action on
functions onM by:

ϕ∗ : C∞(M)→ C∞(M)
f 7→ ϕ∗f := f ◦ ϕ. (5)

Each functionf ∈ C∞(M) generates the one parameter group of canonical transformations
ξf (t) : M → M which satisfy

d

dt
ξf (t)

∗ = ξf (t)∗ ◦ adf (6)

ξf (0) = idM. (7)

Consequently, the reverse (inverse) flow

ϕf (t) := (ξf (t))−1 = ξf (−t) (8)

satisfies

d

dt
ϕf (t)

∗ = −adf ◦ ϕf (t)∗ ϕf (0) = idM. (9)

In the next section we shall apply this to the case where the generating function is ‘time’
dependent and where the ‘time’ parametrizing the flow is just the perturbation parameterε.

Before we do this, however, we shall present the averaging method in this geometric
language. Letf, g ∈ C∞(M), ξf (t) : M → M be the flow generated byf , and letf be
completely integrable with functionally independent integralsbi : M → R, i = 1, . . . , m
such that the map

b : M → Rm

x 7→ {b1(x), . . . , bm(x)}
(10)

has compact inverse images:

b−1(c) ⊂ M is compact. (11)

This implies [14] that these inverse images arem-dimensional tori and that the motion
generated by the Hamiltonianf (which by assumption is in involution with allbi) is
confined to the torus on which the initial point is to be found. Supposeg is such that

g(f ) := lim
T→∞

1

T

∫ T

0
ds ξf (−s)∗g ∈ C∞(M) (12)

s(f )(g) := lim
T→∞

∫ T

0
dt
∫ t

0
ds ξf (−s)∗(g − g(f )) ∈ C∞(M) (13)

exist. Then it follows that

adf (g
(f )) = 0 (14)

ads(f )(g)(f ) = g(f ) − g. (15)
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We first prove (14):

adf (g
(f )) = lim

T→∞
1

T

∫ T

0
ds adf ◦ ξf (−s)∗(g)

= lim
T→∞

1

T

∫ T

0
ds

(
− d

ds
ξf (−s)∗(g)

)
= − lim

T→∞
1

T

(
ξf (−T )∗(g)− g

)
= 0 (16)

where the first equality results from the definition ofg(f ) in (12), the second from the
properties (6), (8), and (9) ofξf (−s), the third is obvious, and the last from the fact that
g ∈ C∞(M) and that the tori are compact. Noting that thus

ξf (−s)∗(g(f )) = g(f ) (17)

one shows in a similar fashion that

ads(f )(g)(f ) = −adf
(
s(f )(g)

)
= lim

T→∞
1

T

∫ T

0
dt
(
ξf (−t)∗(g − g(f ))− (g − g(f ))

)
= g(f ) − g. (18)

In the construction of Kolmogorov’s algorithm it will be repeatedly necessary that for given
functionsf andg we can find a functionw such that

adf ( adw(f )+ g) = 0. (19)

Results (14) and (15) thus assure us that we can solve this problem with the help of the
averaging constructions (12) and (13) by choosing

w = s(f )(g). (20)

It should be noted that this is not the only choice sincew = s(f )(g)+ v would also solve
(19) as long asadv(f ) = 0. However, solution (20) allows us to evaluateadw(f )+g = g(f )
directly.

2.2. Transforming the Hamiltonian with parameter-dependent transformations

Now we shall apply the general results of the previous section to the case where the flow
parameter is the perturbation parameter,ε, and generating functions depend on the flow
parameter as well. At thenth iteration of Kolmogorov’s algorithm we have to construct a
canonical transformationϕn(ε) which we shall do by choosing a corresponding generating
functionwn(ε) depending on the perturbation parameter in the appropriate way. Let

wn(ε) :=
∞∑
p=0

εp

p!
wnp+1 ∈ C∞(M) (21)

be a family ofε-dependent functions onM such that eachwnp+1 ∈ C∞(M) is independent
of ε and let

ξn(ε) := ξ−wn(ε)(ε) : M → M (22)

be the one-parameter group of canonical transformations generated by−wn(ε) and let

ϕn(ε) := (ξn(ε))−1
(23)
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be the corresponding inverse flow. Consequently, according to (9)

d

dε
ϕn(ε)∗ = adwn(ε) ◦ ϕn(ε)∗ ϕn(0) = idM. (24)

Assuming thatϕn(ε)∗ : C∞(M)→ C∞(M) is analytic inε we can write:

ϕn(ε)∗ =
∞∑
p=0

εp

p!
tnp (25)

and use (21) and (24) in order to obtain a recursive relation for thetnp in terms ofadwnp :

tn0 = idC∞(M) (26)

tnp+1 =
p∑
l=0

(
p

l

)
adwnl+1

◦ tnp−l ∀p > 0. (27)

The first few terms in expansion (25) are then

tn1 =adwn1
tn2 =adwn2 + (adwn1 )2
tn3 =adwn3 + (adwn1 )3+ (adwn1 )2 ◦ adwn2 + 2adwn2 ◦ adwn1 .

(28)

Note thatϕn(ε)∗ and thus alltnl are maps acting onC∞(M) whereas theϕn(ε) act onM
itself.

Suppose now

h(ε) := h0+
∞∑
p=1

εp

p!
hp (29)

is the perturbed Hamiltonianh(ε) : M → R whose unperturbed part ish0 = h(0) which is
assumed integrable.

In the classical KAM theory we now have to restrict further considerations to a torus
b−1(c) which has‘sufficiently irrational’ frequenciesνj := ∂h0

∂bj
, i.e. it satisfies a certain

Diophantine condition (see, e.g. [10, 12]) which we shall henceforth assume to hold but
shall not go into detail about, because the purpose of the discussion of the classical theory
is not to give a complete account of it, but to exhibit the structure of the underlying procedure
such that it can betranslated to quantum mechanics.

Moreover, the original proof of the KAM theorem required the use of the implicit
function theorem in order to relate the frequencies of the higher approximants to the original
ones. Benettinet al [12], however, gave a proof using the Lie method which eliminates the
use of the implicit function theorem.

For the sake of notational completeness we introduce the following notation

h0
p := hp ∀p ∈ N h0(ε) :=

∞∑
p=0

εp

p!
h0
p (30)

and thus

h0(ε) = h(ε). (31)

Let ϕ1(ε) be a canonical transformation as in (24) and let

k1(ε) : = ϕ1(ε)∗h0(ε) (32)

=
∞∑
p=0

εp

p!
k1
p (33)
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be the transformed Hamiltonian. Rather than computing a formula fork1
p in terms of thet1p

andh0
l directly from (33) it is more useful for our purposes to obtain a recursive formula

in the following manner. Equation (32) implies

d

dε
k1(ε) =

(
d

dε
ϕ1(ε)∗

)
h0(ε)+ ϕ1(ε)∗

dh0

dε
(ε) (34)

= adw1(ε) ◦ ϕ1(ε)∗(h0(ε))+ ϕ1(ε)∗
dh0

dε
(ε) (from (24)) (35)

= adw1(ε) ◦ k1(ε)+ ϕ1(ε)∗
dh0

dε
(ε) (from (32)) (36)

and by now using (33) gives the desired recursive formula

k1
p+1 =

p∑
l=0

(
p

l

)(
adw1

l+1
(k1
p−l )+ t1p−l(h0

l+1)
)
. (37)

where one has to use

k1
0 = h0

0 (38)

which follows from (30) and (32). In particular we have

k1
1 = adw1

1
(k1

0)+ h0
1 = adw1

1
(h0

0)+ h0
1. (39)

It is desired thatk1(ε) commute withh0 up to O(ε), i.e. that

adh0
0
(k1

1) = 0. (40)

Requirement (40) together with (39) comprises exactly the situation alluded to at the end
of section 2.1 and which is solved according to (14) and (15) by the choice

w1
1 = s(h

0
0)(h0

1) (41)

which implies

adw1
1
(h0

0) = h0
1

(h0
0) − h0

1 (42)

and thus

k1
1 = h0

1

(h0
0)

. (43)

So far onlyw1
1 has been determined. For the remaining terms in the expansion of the

generating functionw1(ε) we make the choice

w1
p = 0 ∀p > 2 (44)

which implies

t1p = (adw1
1
)p (45)

and

k1
p+1 = adw1

1
(k1
p)+

p∑
l=0

(
p

l

)
(adw1

1
)p−l(h0

l+1) p > 1. (46)

Hence, after the first iteration we have the following situation

k1(ε) = h0
0+ εh0

1

(h0
0) +

∞∑
p=2

εp

p!
k1
p (47)
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andh0
1

(h0
0)

commutes withh0. For the second step we treat the ‘commuting’ part ofk1(ε)

as the unperturbed Hamiltonian and the higher-order terms as perturbations, i.e. we set

h1(ε) := k1(ε) = h0
0+ εh0

1

(h0
0)︸ ︷︷ ︸+ ∞∑

p=2

εp

p!
k1
p (48)

= h1
0+

∞∑
p=2

εp

p!
h1
p (49)

such that

h1
0 = h0

0+ εh0
1

(h0
0)

h1
1 = 0 h1

p = k1
p ∀p > 2 (50)

andh1(ε) has no perturbation of first order inε. Now we do a second transformationϕ2(ε)

on h1(ε)

k2(ε) : = ϕ2(ε)∗h1(ε) (51)

=
∞∑
p=0

εp

p!
k2
p (52)

and in the same manner as before one finds that

k2
0 = h1

0 (53)

k2
p+1 =

p∑
l=0

(
p

l

)(
adw2

l+1
(k2
p−l )+ t2p−l(h1

l+1)
)

∀p > 1. (54)

Here we choose the generating functionw2(ε) such that

w2
1 = 0= w2

p ∀p > 4 (55)

which implies

k2
1 = 0 (56)

k2
2 = adw2

2
(k2

0)+ h1
2 (57)

k2
3 = adw2

3
(k2

0)+ h1
3 (58)

k2
p+1 =

(
p

1

)
adw2

2
(k2
p−1)+

(
p

2

)
adw2

3
(k2
p−2)+

p∑
l=1

(
p

l

)
t2p−l(h

1
l+1). (59)

Note thatk2
0 = h1

0 = h0
0 + εh1

1

(h0
0)

is the unperturbed Hamiltonian after the first step which
by our assumption is completely integrable, hence, in particular its flow can be computed.

Keeping in mind that we are working on a selected torus meeting certain conditions
will allow us to assert that the motion of the higher-order approximants remains confined to
deformations of the original torus and to apply the averaging construction. Thus (57) and
(58) together with the averaging results (14) and (15) allow us to choosew2

2 andw2
3 such

that k2
2 andk2

3 commute withh1
0: the choice

w2
2 = s(h

1
0)(h1

2) w2
3 = s(h

1
0)(h1

3) (60)

implies

k2
2 = h1

2

(h1
0)

k2
3 = h1

3

(h1
0)

(61)



2832 W Scherer

andadh1
0
(k2

2) = 0= adh1
0
(k2

3). Hence, after the second transformation we have

k2(ε) = h0
0+ εh0

1

(h0
0)︸ ︷︷ ︸

=h1
0

+ ε
2

2
h1

2

(h1
0) + ε

3

3!
h1

3

(h1
0)︸ ︷︷ ︸

commutes with h10

+
∞∑
p=4

εp

p!
k2
p. (62)

For the third step we treat the ‘commuting’ part ofk2(ε) as the unperturbed Hamiltonian
and the higher-order terms as perturbations, i.e. we set

h2(ε) := k2(ε) = h0
0+ εh0

1

(h0
0) + ε

2

2
h1

2

(h1
0) + ε

3

3!
h1

3

(h1
0)︸ ︷︷ ︸+

∞∑
p=4

εp

p!
k2
p (63)

= h2
0+

∞∑
p=4

εp

p!
h2
p (64)

such that

h2
0 = h0

0+ εh0
1

(h0
0) + ε

2

2
h1

2

(h1
0) + ε

3

3!
h1

3

(h1
0)

(65)

h2
p = 0 16 p 6 3 (66)

h2
p = k2

p ∀p > 4 (67)

and h2(ε) has no perturbation of second and third order inε. Now one does a third
transformationϕ3(ε) on h2(ε) etc.

Note thatw2
2, w

2
3, k

2
2, andk2

3 are constructed with averaging along the flow ofh1
0 and

thus acquire anε-dependence. In fact, what we have described above is the final result
of an expansion scheme in which one uses a newεn in each iteration and at the end sets
εn = . . . = ε0 = ε as follows. Begin with

h0(ε0) = h0
0+

∞∑
p=1

(ε0)
p

p!
h0
p

w1(ε0) =
∞∑
p=0

(ε0)
p

p!
w1
p+1

k1(ε0) = ϕ1(ε0)
∗h0(ε0) =

∞∑
p=0

(ε0)
p

p!
k1
p

where theh0
p,w

1
p+1, k

1
p do not depend onε0 andϕ1(ε0) is a solution of (24) forn = 1 and

ε = ε0. Now expand as above inε0 to arrive at

k1(ε0) = h0
0+ ε0h

0
1

(h0
0) +

∞∑
p=2

(ε0)
p

p!
k1
p

and define

h1(ε1, ε0) := h0
0+ ε0h

0
1

(h0
0)︸ ︷︷ ︸

=:h1
0(ε0)

+
∞∑
p=2

(ε1)
p

p!
k1
p︸︷︷︸
=:h1

p

w2(ε1, ε0) :=
∞∑
p=0

(ε1)
p

p!
w2
p+1(ε0)

k2(ε1, ε0) = ϕ2(ε1, ε0)
∗h1(ε1, ε0) =

∞∑
p=0

(ε1)
p

p!
k2
p(ε0)
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whereϕ2(ε1, ε0) is defined as the solution of (24) forn = 2 andε = ε1. Now expand in
ε1 as above, choosew2

2(ε0) = s(h1
0)(h1

2), etc. Thus, in thenth iteration we expand inεn−1 as
was done above and at the end we setεn−1 = . . . = ε0 = ε. The final result is the expansion
described in equations (30)–(67) forn = 1, 2. For arbitraryn it is summarized in the next
section (without the intermediate step of using a differentε for each iteration). Benettin
et al [12] consider a perturbation not depending on a parameterε which corresponds to
the caseε = 1 and utilizesε = 1-canonical transformation of the type (24). In view
of the quantum mechanical procedure we have, however, chosen to treat the case of an
ε-dependent perturbation.

2.3. Summary of the classical algorithm

Suppose now that aftern− 1 transformations we have the following Hamiltonian

hn−1(ε) = hn−1
0 +

∞∑
p=2n−1

εp

p!
hn−1
p (68)

such that

hn−1
p = 0 ∀16 p < 2n−1. (69)

To this Hamiltonian we apply the transformationϕn(ε) defined by (24) to obtain

kn(ε) = ϕn(ε)∗hn−1(ε) (70)

=
∞∑
p=0

εp

p!
knp. (71)

Thewnp are now chosen as

wnp =


0 if p < 2n−1

s(h
n−1
0 )(hn−1

p ) if 2n−1 6 p < 2n

0 if 2n 6 p.

(72)

This choice leads to the following expansion forkn(ε)

knp =



hn−1
0 if p = 0

0 if 1 6 p < 2n−1

hn−1
p

(hn−1
0 )

if 2n−1 6 p < 2n

p−1∑
l=2n−1−1

(
p − 1
l

)
(adwnl+1

(knp−l−1)+ tnp−l−1(h
n−1
l+1 )) if 2n 6 p.

(73)

Thus we have

hn(ε) = hn0 +
∞∑

p=2n

εp

p!
hnp (74)

where

hn0 = hn−1
0 +

2n−1∑
p=2n−1

εp

p!
hn−1
p

(hn−1
0 )

︸ ︷︷ ︸
commutes with hn−1

0

(75)

hnp = knp ∀p > 2n. (76)
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Equation (75) allows us to write downhn0 explicitly:

hn0 = h0
0+

n∑
l=1

( 2l−1∑
p=2l−1

εp

p!
hl−1
p

(hl−1
0 )
)
. (77)

Note that at each step (i.e. after each transformation) the averaging procedure is executed
with a new Hamiltonian which generates the flow along which the average is computed. This
is one of the crucial improvements of Kolmogorov’s method over the original Poincaré–von
Zeipel perturbation theory in classical mechanics and in the quantum mechanical version
this will be responsible for the difference to, and (presumably) improvement over, the usual
Rayleigh–Schr̈odinger perturbation theory.

3. Kolmogorov’s algorithm in quantum mechanics

3.1. Quantum mechanical transformations and averaging

The perturbation theories in classical mechanics (Poincaré–von Zeipel and Kolmogorov)
are built with the tools of the symplectic (or Poissonian) geometry of the classical phase
space (e.g. generating functions, canonical flows). Using the well known fact (see e.g. [15])
that quantum mechanics may be formulated as an∞-dimensional Hamiltonian system it is
possible to construct the quantum perturbation theories using the symplectic language. The
resulting algorithm, however, can be described using purely ‘quantum mechanical language’
(e.g. unitary groups and their generators, which, of course, are disguised objects of the∞-
dimensional symplectic geometry of quantum mechanics) and it is this more immediate
route to the quantum mechanical Kolmogorov algorithm that we shall adopt.

Let H be a Hilbert space and8,F,G : H→ H linear operators. Then we define the
pull-back action8∗ of 8 and the adjoint actionADF of F on operatorsG onH as

8∗A := 8†A8 (78)

ADF (G) := i

h̄
[F,G] (79)

where8† is the adjoint of8 and [·, ·] denotes the commutator. Let

Wn(ε) :=
∞∑
p=0

εp

p!
Wn
p+1 (80)

be a family of self-adjoint operators such that theWn
p do not depend onε. Then each

−Wn(ε) generates a one parameter group of unitary transformations4ε : H → H which
satisfies

d

dε
4n(ε) = i

h̄
Wn(ε)4n(ε) 4n(0) = 1I. (81)

For the inverse transformation

8n(ε) := 4n(ε)−1 (82)

it follows that
d

dε
8n(ε) = − i

h̄
8n(ε)Wn(ε) 8n(0) = 1I (83)

and for its pull-back we have just as in (24)

d

dε
8n(ε)∗ = ADWn(ε) ◦8n(ε)∗ 8n(0) = idH. (84)
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Following the classical construction we also expand8n(ε)∗ in terms of ε-independent
operatorsT np (which should be viewed as acting onL(H) (=linear operators onH)):

8n(ε)∗ =
∞∑
p=0

εp

p!
T np (85)

and for thoseT np we obtain the same recursive formula as in (26) and (27)

T n0 = idL(H) (86)

T np+1 =
p∑
l=0

(
p

l

)
ADWn

l+1
◦ T np−l ∀p > 0 (87)

and the first terms in this expansion are identical to those in (28) with capital letters and
the appropriate replacementad → AD.

Because we are dealing with linear flows, unlike in the general classical case, we can
use (83) to construct recursively theε-expansion

8n(ε) =
∞∑
p=0

εp

p!
8n
p (88)

of 8n(ε) itself in terms of theWn
p :

8n
p+1 = −

i

h̄

p∑
l=0

(
p

l

)
8n
p−lW

n
l+1. (89)

The first few terms in this expansion are

8n
0 = 1I (90)

8n
1 = −

i

h̄
Wn

1 (91)

8n
2 = −

i

h̄
Wn

2 −
1

h̄2 (W
n
1 )

2 (92)

8n
3 = −

i

h̄
Wn

3 +
i

h̄3 (W
n
1 )

3− 2

h̄2W
n
1W

n
2 −

1

h̄2W
n
2W

n
1 . (93)

Before we turn to Kolmogorov’s algorithm itself in section 3.2 we first show that averaging
constructions identical to those in (12) and (13) can also be made in quantum mechanics
and that they lead to the same results as in (14) and (15). LetF,G : H → H be linear
self-adjoint operators and let

4F (t) = exp

(
− i

h̄
tF

)
: H→ H (94)

be the unitary flow generated byF . Its pull-back satisfies an equation similar to the classical
case (6)

d

dt
4F (t)

∗ = 4F (t)∗ ◦ADF . (95)

Similar to the classical case (12) and (13) we now define

G
(F)

:= lim
T→∞

1

T

∫ T

0
ds 4F (−s)∗G ∈ L(H) (96)

S(F)(G) := lim
T→∞

∫ T

0
dt
∫ t

0
ds 4F (−s)∗(G−G(F)

) ∈ L(H). (97)
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Again as in the classical case this implies

ADF (G
(F)
) = 0 (98)

ADS(F)(G)(F ) = G(F) −G (99)

provided that one has

lim
T→∞

(
4F (−T )∗G−G

T

)
= 0 (100)

this being the quantum equivalent of the classical equation (16). In the classical situation
the vanishing of the term corresponding to the left-hand side of (100) is a result of the
(assumed) compactness of the tori so that (100) can be viewed as the ‘quantum analogue
of tori’.

The proof of the equalities (98) and (99) is then similar to the classical case since it
is based entirely on the geometrical properties of the flow represented in (95). As long as
G is bounded (100) may be understood in the uniform topology, i.e. convergence in the
operator norm and the limits appearing in (96), (97) exist under (certain conditions) in the
weak operator topology. In the case of unboundedG these limits might be understood in
the norm resolvent sense [16] but this latter case still needs to be worked out in more detail.

Having established that the method of averaging can also be defined for quantum
mechanics we now turn to the perturbation algorithm in the quantum case.

3.2. General algorithm

Let H 0
0 ∈ L(H) be the unperturbed Hamiltonian and let

H 0(ε) := H 0
0 +

∞∑
p=1

εp

p!
H 0
p (101)

be the perturbed Hamiltonian which we transform with81(ε) to K1(ε):

K1(ε) : = 81(ε)∗H 0(ε) (102)

=
∞∑
p=0

εp

p!
K1
p (103)

where one has, as in the classical case,

K1
0 = H 0

0 (104)

K1
p+1 =

p∑
l=0

(
p

l

)
(ADW 1

l+1
(K1

p−l)+ T 1
p−l(H

0
l+1)). (105)

In particular, one has forK1
1

K1
1 = ADW 1

1
(H 0

0 )+H 0
1 (106)

such that the choice

W 1
1 = S(H

0
0 )(H 0

1 ) (107)

W 1
p = 0 ∀p > 2 (108)

leads to

K1
1 = H 0

1

(H 0
0 )

(109)

K1
p+1 = ADW 1

1
(K1

p)+
p∑
l=0

(
p

l

)
(ADW 1

1
)p−l(H 0

l+1) ∀p > 1 (110)



Quantum averaging II 2837

and thus

K1(ε) = H 0
0 + εH 0

1

(H 0
0 ) +

∞∑
p=2

εp

p!
K1
p (111)

whereH 0
1

(H 0
0 )

commutes withH 0
0 . For the second step we treat the ‘commuting’ part of

K1(ε) as the unperturbed Hamiltonian and the higher-order terms as perturbations, i.e. we
set

H 1(ε) := K1(ε) = H 0
0 + εH 0

1

(H 0
0 )︸ ︷︷ ︸+ ∞∑

p=2

εp

p!
K1
p (112)

= H 1
0 +

∞∑
p=2

εp

p!
H 1
p (113)

such that

H 1
0 = H 0

0 + εH 0
1

(H 0
0 )

H 1
1 = 0 H 1

p = K1
p ∀p > 2 (114)

andH 1(ε) has no perturbation of first order inε. Now one proceeds exactly as in the
classical case and the algorithm may be summarized likewise: suppose now that aftern−1
transformations we have the following Hamiltonian

Hn−1(ε) = Hn−1
0 +

∞∑
p=2n−1

εp

p!
Hn−1
p (115)

such that

Hn−1
p = 0 ∀16 p < 2n−1. (116)

To this Hamiltonian we apply the transformation8n(ε) defined by (84) to obtain

Kn(ε) = 8n(ε)∗Hn−1(ε) (117)

=
∞∑
p=0

εp

p!
Kn
p . (118)

TheWn
p are now chosen as

Wn
p =


0 if p < 2n−1

S(H
n−1
0 )(Hn−1

p ) if 2n−1 6 p < 2n

0 if 2n 6 p.

(119)

This choice leads to the following expansion forKn(ε)

Kn
p =



Hn−1
0 if p = 0

0 if 1 6 p < 2n−1

Hn−1
p

(Hn−1
0 )

if 2n−1 6 p < 2n

p−1∑
l=2n−1−1

(
p − 1
l

)
(ADWn

l+1
(Kn

p−l−1)+ T np−l−1(H
n−1
l+1 )) if 2n 6 p.

(120)
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Thus we have

Hn(ε) = Hn
0 +

∞∑
p=2n

εp

p!
Hn
p (121)

where

Hn
0 = Hn−1

0 +
2n−1∑
p=2n−1

εp

p!
Hn−1
p

(Hn−1
0 )

︸ ︷︷ ︸
commutes with Hn−1

0

(122)

Hn
p = Kn

p ∀p > 2n. (123)

Equation (122) allows us to write downHn
0 explicitly:

Hn
0 = H 0

0 +
n∑
l=1

( 2l−1∑
p=2l−1

εp

p!
Hl−1
p

(H l−1
0 )
)
. (124)

The first few terms in this expansion are

H 1
0 = H 0

0 + εH 0
1

(H 0
0 )

H 2
0 = H 1

0 +
ε2

2!
H 1

2

(H 1
0 ) + ε

2

3!
H 1

3

(H 1
0 )

H 3
0 = H 2

0 +
ε4

4!
H 2

4

(H 2
0 ) + · · · + ε

7

7!
H 2

7

(H 2
0 )

(125)

where the appearing operators are calculated from (87), (120), and (123) as

H 1
2 = H 0

2 +
i

h̄
[W 1

1 , H
0
1

(H 0
0 ) +H 0

1 ]

H 1
3 = H 0

3 + 3
i

h̄
[W 1

1 , H
0
2 ] +

(
i

h̄

)2

[W 1
1 , [W 1

1 , H
0
1

(H 0
0 ) + 2H 0

1 ]]

H 1
4 = H 0

4 +
i

h̄
[W 1

1 , H
1
3 + 3H 0

3 ]

+3

(
i

h̄

)2

[W 1
1 , [W 1

1 , H
0
2 ]] +

(
i

h̄

)3

[W 1
1 , [W 1

1 , [W 1
1 , H

0
1 ]]]

H 2
4 = H 1

4 + 3
i

h̄
[W 2

2 , H
1
2

(H 1
0 ) +H 1

2 ]

...

(126)

This shows that we can execute Kolmogorov’s algorithm in quantum mechanics in exactly
the same way as in classical mechanics if we only make the suitable substitutions
ad → AD, h → H,w → W, . . .. So far it is not clear how this can be used to obtain
eigenvalues and eigenvectors of the perturbed Hamiltonian. For this we turn to the following
section.

3.3. Diagonalization, eigenvalues and eigenvectors

Let H 0
0 be the unperturbed Hamiltonian which we assume to be diagonal in some basis

B := {|j, α〉0|α ∈ Dj }∞j=1 (127)
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where j denotes the level,α is the degeneracy-index,Dj := {1, . . . , dj }, and dj is the
degeneracy of thej th eigenvalueE0

j of H 0
0 :

H 0
0 =

∞∑
j=1

∑
α∈Dj
|j, α〉0E0

j
0〈j, α|. (128)

In view of the intended application to quantum mechanics we have started with an∞-
dimensional space but the method is, of course, also applicable for operators in finite-
dimensional spaces in which casej is confined to a finite index set.

By construction (see (122))H 0
1

(H 0
0 )

commutes withH 0
0 , hence

H 1
0 = H 0

0 + εH 0
1

(H 0
0 )

(129)

can be diagonalized in the same basisB. Having done this we note that again by construction

H 1
2

(H 1
0 )

andH 1
3

(H 1
0 )

commute withH 1
0 , hence

H 2
0 = H 1

0 +
ε2

2
H 1

2

(H 1
0 ) + ε

3

3!
H 1

3

(H 1
0 )

(130)

can be diagonalized in the same basisB. Suppose now thatHn−1
0 is diagonal inB. By

construction (see again (122)) allHn−1
p

(Hn−1
0 )

with 2n−1 6 p 6 2n − 1 commute withHn−1
0

and thus

Hn
0 = Hn−1

0 +
2n−1∑
p=2n−1

εp

p!
Hn−1
p

(Hn−1
0 )

(131)

can be diagonalized inB.
Note that

Hn(ε) = 8n(ε)∗ ◦ · · · ◦81(ε)∗H 0(ε)

= 8n(ε)† · · ·81(ε)†H 0(ε)81(ε) · · ·8n(ε)
(132)

implies thatHn(ε) and our original perturbed HamiltonianH(ε) = H 0(ε) are unitarily
equivalent:

Hn(ε) = Un(ε)†H 0(ε)Un(ε) (133)

whereUn(ε) is the unitary transformation

Un(ε) := 81(ε) · · ·8n(ε). (134)

Moreover, one has

Hn(ε) = Hn
0 +O(ε2n ) (135)

which implies thatHn
0 unitarily approximates the original perturbed Hamiltonian:

H(ε) = H 0(ε) = Un(ε)Hn
0U

n(ε)† +O(ε2n ). (136)

Consequently, sinceHn
0 can be diagonalized inB as shown above, we can read off its

eigenvalues which coincide with those of our original perturbed HamiltonianH(ε) up to
O(ε2n ). In the formulae:
• Let Enj,α(ε) be an eigenvalue ofHn

0 with eigenvector|j, α〉n(ε):
Hn

0 ε|j, α〉n(ε) = Enj,αε|j, α〉n(ε) (137)

• and letEj,α(ε) be an eigenvalue ofH 0(ε) = H(ε) with eigenvector|j, α〉(ε):
H(ε)|j, α〉(ε) = Ej,α(ε)|j, α〉(ε) (138)
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then

Ej,α(ε) = Enj,α(ε)+O(ε2n ) (139)

|j, α〉(ε) = Un(ε)|j, α〉n(ε)+O(ε2n ). (140)

Equation (139) gives the desired approximation of the eigenvalues ofH(ε) and for the
approximation of its eigenvectors one can determineUn(ε) up to O(ε2n ) in terms of theWn

p

from (88), (89), and (134). For example, one finds

U2(ε) = 1I−
(

i

h̄
W 1

1

)
ε −

(
i

2h̄
W 2

2 +
1

2h̄2 (W
1
1 )

2

)
ε2

+
(

i

6h̄3 (W
1
1 )

3− i

6h̄
W 2

3 −
1

2h̄2W
1
1W

2
2

)
ε3+O(ε4) (141)

In this way one has constructed approximations of the eigenvalues and the eigenvectors
of H(ε) to any desired order inε. It should be noted, however, that the expansions

obtained this way are not simple power series expansions since theHn−1
p

(Hn−1
0 )

themselves
depend onε. This dependence arises because of the averaging along the flow ofHn−1

0
which by construction depends onε and it is this dependence which makes the current
perturbation theory distinct from the usual Rayleigh–Schrödinger and which seems to
improve convergence because it is akin to a partial re-summation at each step.

3.4. Expressions in terms of an eigenbasis

In this section we shall exhibit the previously developed perturbation algorithm in terms
of a basis consisting of eigenvectors of the unperturbed Hamiltonian,H 0

0 , which is now
assumed to have a completely discrete but possibly degenerate spectrum.

To begin with we derive expressions for the averaging constructions (96) and (97)
in terms of a basis of eigenvectors. LetF be a self-adjoint operator with a discrete
spectrum{EFj }∞j=1 with Dj := {1, . . . , dj = degeneracy ofj th level} whose eigenvectors
{|j, α〉F |α ∈ Dj }∞j=0 form an orthonormalized basis

F =
∑
j ;α∈Dj

|j, α〉FEFj F〈j, α|. (142)

The unitary flow generated byF (94) may thus be written as

4F (t) =
∑
j ;α∈Dj

|j, α〉Fe−
i
h̄
EFj t F〈j, α| (143)

and a simple integration yields

G
(F) =

∑
j

∑
α,β∈Dj

|j, α〉F F〈j, α|G|j, β〉F F〈j, β| (144)

for an operatorG. Similarly one finds that

S(F)(G) = h̄
i

∑
j 6=k

∑
α∈Dj ;β∈Dk

|j, α〉F
F〈j, α|G|k, β〉F
EFj − EFk

F〈k, β|. (145)

Let us now use the same notation as in (137) and (138) with the additional simplification
that

|j, α〉 := |j, α〉0 (146)
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denotes the (ε-independent) eigenvector of the unperturbed HamiltonianH 0
0 . We assume

that for eachn and ε the {|j, α〉n(ε)|α ∈ Dj }∞j=0 form an orthonormalized basis. Then it
follows that

|j, α〉n(ε) =
∑
β∈Dj

cnj (ε)αβ |j, β〉 (147)

where theε-dependentdj × dj matrix

cnj (ε)αβ = 〈j, β|j, α〉n(ε) (148)

is unitary. This last statement (unitarity ofcnj ) follows trivially from the assumption of
orthonormality of the|j, α〉n(ε). The statement that all|j, α〉n(ε) can be written in this
form is proven by induction. It is obviously true forn = 0. Suppose it is true forn− 1:

|j, α〉n−1(ε) =
∑
β∈Dj

cn−1
j (ε)αβ |j, β〉 (149)

and this implies

Hn−1
0 =

∑
j

∑
α∈Dj
|j, α〉n−1(ε)En−1

j,α (ε)(ε)
n−1〈j, α| (150)

=
∑
j

∑
α,β∈Dj

|j, α〉
( ∑
γ∈Dj

cn−1
j (ε)

†
βγE

n−1
j,γ (ε)c

n−1
j (ε)γα

)
〈j, β|. (151)

From (144) it follows that

Hn−1
p

(Hn−1
0 ) =

∑
j

∑
α,β∈Dj

|j, α〉n−1(ε)(ε)n−1〈j, α|Hn−1
p |j, β〉n−1(ε)(ε)n−1〈j, β| (152)

but it is easily verified that∑
α∈Dj
|j, α〉n−1(ε)(ε)n−1〈j, α| =

∑
α∈Dj
|j, α〉〈j, α| (153)

and thus

Hn−1
p

(Hn−1
0 ) =

∑
j

∑
α,β∈Dj

|j, α〉〈j, α|Hn−1
p |j, β〉〈j, β|. (154)

Inserting this into (131) together with (151) yields

Hn
0 = Hn−1

0 +
2n−1∑
p=2n−1

εp

p!
Hn−1
p

(Hn−1
0 )

(155)

=
∑
j

∑
α,β∈Dj

|j, α〉〈j, α|Hn
p |j, β〉〈j, β| (156)

where

〈j, α|Hn
p |j, β〉 =

∑
γ∈Dj

cn−1
j (ε)

†
βγE

n−1
j,γ (ε)c

n−1
j (ε)γα +

2n−1∑
p=2n−1

εp

p!
〈j, α|Hn−1

p |j, β〉 (157)

is adj ×dj matrix which has to be diagonalized in order to determineEnj,α(ε) and it follows
that the eigenvectors|j, α〉n(ε) of Hn

0 are of the form of (147).
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With this in mind we then have for 2n−1 6 p < 2n

Wn
p =︸︷︷︸
(119)

S(H
n−1
0 )(Hn−1

p )

=︸︷︷︸
(145)

h̄

i

∑
j 6=k

∑
α∈Dj
β∈Dk

|j, α〉n−1(ε)
(ε)n−1〈j, α|Hn−1

p |k, β〉n−1(ε)

En−1
j,α (ε)− En−1

k,β (ε)
(ε)n−1〈k, β|

= h̄
i

∑
j 6=k

∑
α,λ,µ∈Dj
β,γ,δ∈Dk

|j, λ〉

×c
n−1
j (ε)αλc

n−1
j (ε)†µα〈j, µ|Hn−1

p |k, δ〉cn−1
k (ε)βδc

n−1
k (ε)

†
γβ

En−1
j,α (ε)− En−1

k,β (ε)
〈k, γ |. (158)

Expression (158) forWn
p is reminiscent of similar sums over intermediate states appearing in

the standard quantum perturbation theory with the notable exception that the denominator
now contains the corrected andε-dependent eigenvalues. The rigorous existence of the
operatorsWn

p—which via (119) is equivalent to the existence of operator-valued integrals
of the form of (97)—has to be established with functional analytic tools and cannot be
ascertained with the present method (see also section 5.2). For example, we cannota priori
and without further knowledge of the spectrum ofH 0

0 guarantee the existence of a non-
emptyε-interval in which all denominators in (158) are non-zero. Robnik [17], however, has
presented heuristic arguments leading to the conjecture that the series for theWn converge
for ‘certain admissible perturbations’.

3.5. Summary of the quantum mechanical algorithm

Once the expressions for theHn
p are available we can start to compute, with the algorithm,

eigenvalues and eigenvectors ofH(ε) = H 0(ε) by computing those ofHn
0 . The recursive

procedure runs as follows. Starting withn = 1 do the following loop.
Step 1: Compute

Hn
0 = Hn−1

0 +
2n−1∑
p=2n−1

εp

p!
Hn−1
p

(Hn−1
0 )

. (159)

It is block-diagonal, hence its diagonalization can be carried out as follows. For eachj

diagonalize thedj × dj matrix

〈j, α|Hn
0 |j, β〉 =

∑
γ∈Dj

cn−1
j (ε)

†
βγE

n−1
j,γ (ε)c

n−1
j (ε)γα +

2n−1∑
p=2n−1

εp

p!
〈j, α|Hn−1

p |j, β〉 (160)

i.e. determine its eigenvaluesEnj,α(ε), α = 1, . . . , dj and the diagonalizingdj × dj matrix
cnj (ε)αβ such that

|j, α〉n(ε) =
∑
β∈Dj

cnj (ε)αβ |j, β〉 (161)

is the diagonal basis.
If only approximations of eigenvalues up to a given order6 2n − 1 are desired stop

here. TheEnj,α(ε) give an approximation up to O(ε2n ). Otherwise continue.
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Step 2: For 2n−1 6 p < 2n calculate

Wn
p = S(H

n−1
0 )(Hn−1

p ) = h̄
i

∑
j 6=k

∑
α,λ,µ∈Dj
β,γ,δ∈Dk

|j, λ〉

×c
n−1
j (ε)αλc

n−1
j (ε)†µα〈j, µ|Hn−1

p |k, δ〉cn−1
k (ε)βδc

n−1
k (ε)

†
γβ

En−1
j,α (ε)− En−1

k,β (ε)
〈k, γ |. (162)

For all otherp’s setWn
p = 0.

If approximations of eigenvectors up to a given order6 2n− 1 are desired then use the
W 1
p , . . . ,W

n
p in (88), (89), and (134), in order to computeUn(ε) up to the desired order

and calculate the desired approximation to the eigenvector from (140).
Otherwise continue.

Step 3: Forp > 2n use theWn
p of step 2 and

Kn
p =


Hn−1

0 if p = 0

0 if 1 6 p < 2n−1∑
j

∑
α,β∈Dj

|j, α〉〈j, α|Hn−1
p |j, β〉〈j, β| if 2n−1 6 p < 2n

(163)

and for 2n 6 p

Hn
p = Kn

p =
p−1∑

l=2n−1−1

(
p − 1
l

)
(ADWl+1(Kn

p−l−1)+ T np−l−1(H
n−1
l+1 )) (164)

to calculateHn
p in terms of the basis{|j, α〉|α ∈ Dj }∞j=0.

Step 4: Replacen by n+ 1 and go to step 1.

3.6. Non-degenerate levels

In the case of a completely non-degenerate spectrum (dj = 1, ∀j ) the algorithm simplifies
considerably [13] since we do not have to diagonalize finite-dimensional matrices at each
step. First (147) becomes

|j〉n(ε) = |j〉0 = |j〉 (165)

and (152) is in this case

Hn−1
p

(Hn−1
0 ) =

∑
j

|j〉〈j |Hn−1
p |j〉〈j |. (166)

Consequently (155) turns out to be

Hn
0 =

∑
j

|j〉
(
En−1
j (ε)+

2n−1∑
p=2n−1

εp

p!
〈j |Hn−1

p |j〉
)
〈j | (167)

which implies a simple formula for the eigenvalues:

Enj (ε) = En−1
j (ε)+

2n−1∑
p=2n−1

εp

p!
〈j |Hn−1

p |j〉 (168)

= E0
j +

n∑
l=1

( 2n−1∑
p=2n−1

εp

p!
E
(p)

j (ε)

)
(169)
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where we have set

E
(p)

j (ε) := 〈j |Hk−1
p |j〉 if 2k−1 6 p 6 2k − 1. (170)

Moreover, (158) becomes

Wn
p =

h̄

i

∑
j 6=k
|j〉 〈j |Hn−1

p |k〉
En−1
j (ε)− En−1

k (ε)
〈k|. (171)

In [13] we have worked out the approximations to the eigenvalues including terms of O(ε4)

for the case of a perturbation which is only linear inε, i.e.

H(ε) = H 0
0 + εH 0

1 =
∑
j

|j〉0E0
j

0〈j | + ε
∑
j,k

|j〉0Vjk0〈k| (172)

andH 0
p = 0, ∀p > 2. In this case one finds

E
(1)
j = Vjj (173)

E
(2)
j = 2!

∑
j 6=k

|Vjk|2
E0
j − E0

k

(174)

E
(3)
j = 3!

( ∑
m6=j 6=k

VjkVkmVmj

(E0
j − E0

k )(E
0
j − E0

m)
−
∑
j 6=k

|Vjk|2Vjj
(E0

j − E0
k )

2

)
(175)

which is identical to the standard Rayleigh–Schrödinger result. However, a different theory
emerges when we look at the coefficient ofε4 (and higher ones):

E
(4)
j = 24

∑
j 6=l

|Vlj |2(Vll − Vjj )2
(E0

j − E0
l )

2(E1(ε)j − E1(ε)l)

+6
∑

j 6=l 6=k 6=
k 6=j 6=m6=k

VjlVlkVkmVmj

E1(ε)j − E1(ε)k

(
1

E0
j − E0

l

− 1

E0
l − E0

k

)

×
(

1

E0
k − E0

m

− 1

E0
m − E0

j

)

+12
∑

j 6=l 6=k 6=j
VjlVlkVkj

{
Vll − Vkk

(E0
j − E0

l )(E
0
l − E0

k )(E
0
k − E0

j )

+ Vll − Vjj
(E0

j − E0
l )(E

1(ε)j − E1(ε)l)

(
1

E0
l − E0

k

− 1

E0
k − E0

j

)

+ Vkk − Vjj
(E0

j − E0
k )(E

1(ε)j − E1(ε)k)

(
1

E0
j − E0

l

− 1

E0
l − E0

k

)}

+
∑

k 6=l 6=j 6=m6=k
VjlVlkVkmVmj

{
9

(E0
m − E0

j )(E
0
j − E0

l )

×
(

1

E0
k − E0

m

− 1

E0
l − E0

k

)
+ 3

(E0
l − E0

k )(E
0
k − E0

m)

(
1

E0
j − E0

l

− 1

E0
m − E0

j

)}
(176)
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which now depends onε via

E1
j (ε) = E0

j + εVjj (177)

making the coefficient ofε4 a function ofε. This continues to be the case in all higher
orders. In the case where the summation runs over an infinite number of eigenstates the
above formula implies thatE(4)j is of the form of

E
(4)
j = E(4)j (0)+ lim

N→∞
QN−1
j (ε)

PNj (ε)
(178)

whereE(4)j (0) does not depend onε, QN−1
j (ε) is a polynomial of maximal orderN − 1 in

ε andPNj (ε) is polynomial of maximal orderN in ε.
It is this feature (emerging more explicitly in the following examples) which

makes Kolmogorov’s perturbation method distinct from the usual Rayleigh–Schrödinger
perturbation theory.

4. Examples

4.1. A two-dimensional toy model

To illustrate the method before we turn to more physical applications we consider the
following simple two-dimensional Hamiltonian

H 0
0 =

(
1 0
0 4

)
(179)

with a perturbation which is only linear inε

H 0
1 =

(
1 3
3 2

)
H 0
p = 0 ∀p > 2. (180)

The exact eigenvalues of the perturbed HamiltonianH(ε) = H 0
0 + εH 0

1 are

E1,2(ε)EX = 1
2

(
5+ 3ε ±

√
37ε2+ 6ε + 9

)
(181)

whereas the usual Rayleigh–Schrödinger perturbation theory gives up to seventh order

E3
1(ε)RS = 1+ ε − 3ε2+ ε3+ 8

3ε
4− 26

9 ε
5− 109

27 ε
6+ 721

81 ε
7 (182)

E3
2(ε)RS = 4+ 2ε + 3ε2− ε3− 8

3ε
4+ 26

9 ε
5+ 109

27 ε
6− 721

81 ε
7 (183)

where in accordance with previous notation for the Kolmogorov theory the superscript
3= n is used here to denote that the expansion is up to 2n=3− 1= seventh order although
the number,n, of transformations is meaningless in the Rayleigh–Schrödinger perturbation
theory. With Kolmogorov’s algorithm we find

H 1
0 =

(
1+ ε 0

0 4+ 2ε

)
(184)

and thus

W 1
1 = S(H

0
0 )(H 0

1 ) =
(

0 −1
1 0

)
(185)

with which we compute

H 1
2 =

(−6 −2
−2 6

)
H 1

3 =
(

6 −24
−24 −6

)
H 1

4 =
(

72 16
16 −72

)
(186)
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Figure 1. The two eigenvalues of the two-dimensional toy model as functions of the perturbation
parameter, calculated by explicit diagonalization (full curves), standard perturbation theory (short
broken curves), and Kolmogorov’s algorithm (long broken curves).

and thus

W 2
2 = S(H

1
0 )(H 1

2 ) =
(

0 2
3+ε

− 2
3+ε 0

)
(187)

and so on. Working untiln = 3 (i.e. up to 2n − 1 = seventh order) one finds for the
eigenvalues of the perturbed matrix

E3
1(ε)SU = (405+ 675ε − 900ε2− 360ε3+ 1215ε4− 405ε5− 2295ε6+ 2385ε7

+366ε8+ 2ε9)[45(3+ ε)2]−1

E3
2(ε)SU = (1620+ 1890ε + 1935ε2+ 495ε3− 1215ε4+ 405ε5+ 2295ε6− 2385ε7

−366ε8− 2ε9)[45(3+ ε)2]−1.

(188)

In figure 1 all three resultsE3
1,2(ε) are plotted as a function ofε and it is evident

that Kolmogorov’s method performs better for both eigenvalues than the usual Rayleigh–
Schr̈odinger perturbation theory.

4.2. Anharmonic oscillator

Turning to more ‘physical models’ we now treat the anharmonic oscillator in one dimension,
i.e. we now have as the Hilbert spaceH = L2(R, dx) and

H 0
0 = −

d2

dx2
+ x2 H 0

1 = x4 H 0
p = 0 ∀p > 2. (189)

Although Kolmogorov’s algorithm can be formulated in closed form expressions of the
form of (96) and (97) we have not been able to evaluate those in the case at hand and
have used the expressions given in section 3.4 with the help of the eigenbasis ofH 0

0 . In
doing so we can only deal with a finite number of eigenfunctions and operators represented
by matrices of finite size. Computational bounds have limited us to the consideration of
16× 16 matrices and calculations of again up to 23− 1= seventh order inε.

Under these restrictions one finds, for example, for the ground-state energy from the
standard Rayleigh–Schrödinger theory up to the order of 7 [18]:

E3
0(ε)RS = 1+ 3

4ε − 21
16ε

2+ 333
64 ε

3− 30 885
1024 ε

4+ 916 731
4096 ε

5− 65 518 401
32 768 ε

6

+ 2 723 294 673
131 072 ε7 (190)
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= 1+ 0.75ε − 1.3125ε2+ 5.203 12ε3− 30.1611ε4+ 223.811ε5

−1999.46ε6+ 20 777.0ε7 (191)

whereas Kolmogorov’s method gives

E3
0(ε)SU = 1+ 3

4ε − 21
16ε

2+ 333
64 ε

3 (192)

−3(1317 760+ 12 935 472ε + 36 433 368ε2+ 25 183 305ε3)

2048(4+ 9ε)(4+ 15ε)(4+ 21ε)
ε4

+9(10 518 848+ 100 086 096ε + 260 912 556ε2+ 140 051 835ε3)

8192(4+ 9ε)(4+ 15ε)(4+ 21ε)
ε5

−ε6 [1.144 41× 107(2.248 19+ 59.2375ε + 636.794ε2+ 3585.19ε3

+11 259.9ε4+ 19 263.9ε5+ 15 955ε6+ 4480.84ε7)]

×[(4+ 9ε)2(4+ 15ε)2(4+ 21ε)2(4+ 27ε)]−1+ ε7

×[1.029 97× 108(2.401 02+ 60.9076ε + 623.15ε2+ 3290.11ε3

+9489.37ε4+ 14 456.5ε5+ 10 097.2ε6+ 2183.24ε7)]

×[(4+ 9ε)2(4+ 15ε)2(4+ 21ε)2(4+ 27ε)]−1

= 1+ 0.75ε − 1.3125ε2+ 5.20312ε3− 30.1611ε4+ 223.811ε5− 1999.46ε6

+20 777.0ε7+O(ε8). (193)

Equation (193) is a series expansion of the rational functionE3
0(ε)SU and it reproduces

the (unique) asymptotic result of the divergent seriesE0(ε)RS . Of course, in this case
no complete analytical solution of the eigenvalue problem is known and thus we have
to resort to other numerical results for comparisons. One way to obtain such numerical
results is to compute the eigenvalues by finding the zeros of the characteristic polynomial
of a finite size matrix for each value ofε (see e.g. [19]). For this purpose we have
chosen the diagonalization function inMathematicato compute the lowest eigenvalue of
the 16×16 matrixH(ε) for certainε and compared its results with the results for the lowest
eigenvalue of the anharmonic oscillator as shown in table 1. Figure 2 shows the performance
of the three methods (‘exact’, i.e. numerical diagonalization byMathematica, Rayleigh–
Schr̈odinger, and Kolmogorov’s method) and it is again evident that Kolmogorov’s method
outperforms the standard Rayleigh–Schrödinger theory. This improved performance of
Kolmogorov’s method over the standard theory as shown in table 1 and figure 2 for the
two lowest eigenvalues is actually representative for the whole spectrum of the cut-off
anharmonic oscillator Hamiltonian. For larger values ofε both Rayleigh–Schrödinger as
well as Kolmogorov’s method deviate considerably from the ‘exact’ results but the latter
much less than the former. In any case higher-order computations are needed to exhibit the
behaviour of the new method more clearly.

4.3. Two-electron atoms

As an application of the degenerate case we compute the ground-state energies of two-
electron atoms whose Hamiltonian is

H2e(Z) = − h̄2

2me
(1x1 +1x2)−

Ze2

|x1| −
Ze2

|x2| +
e2

|x1− x2| (194)

whereme is the electron mass (infinite mass of nucleus is assumed),e the electron charge,
Z the charge number of the nucleus andxi denotes the position of the electronsi = 1, 2
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Table 1. Distance of the result from Kolmogorov’s algorithm (second column) and the Rayleigh–
Schr̈odinger result (third column) from the numerical result as function of the perturbation (first
column) for the ground-state energy of the anharmonic oscillator

ε E0(ε)EX,−E3
0(ε)SU E0(ε)EX,−E3

0(ε)RS

0.01 −1.429 61× 10−11 −2.172 57× 10−11

0.02 −3.158 14× 10−9 −4.994 68× 10−9

0.03 −7.081 58× 10−8 −1.163 12× 10−7

0.04 −6.257 32× 10−7 −1.065 46× 10−6

0.05 −3.329 32× 10−6 −5.867 8× 10−6

0.06 −1.287 69× 10−5 −2.345 82× 10−5

0.07 −4.001 67× 10−5 −7.525 44× 10−5

0.08 −1.060 5× 10−4 −2.056 36× 10−4

0.09 −2.490 25× 10−4 −4.973 49× 10−4

0.1 −5.318 07× 10−4 −1.092 86× 10−3

Figure 2. First excited energy of the anharmonic oscillator as function of the perturbation
parameter, calculated by numerical diagonalization (full curve), standard perturbation theory
(short broken curve), and Kolmogorov’s algorithm (long broken curve).

relative to the nucleus. We wish to find the energyE0(Z) of the spatially symmetric (para)
ground state

H2e(Z)ψ0(x1,x2, Z) = E0(Z)ψ0(x1,x2, Z). (195)

In order to treat this problem perturbatively we re-scale the position coordinates of the
electrons as [20, 21]

ri := me2Z

h̄2 xi (196)

define the perturbation parameter as

ε := 1

Z
(197)

and introduce the rescaled energy

E0(ε) := 1

2R∞Z2
E0(Z) (198)

(whereR∞ = 13.605 804 eV is the Rydberg energy) such that the eigenvalue problem (195)
is equivalent to

(H 0
0 + εH 0

1 )ψ0(r1, r2, ε) = E0(ε)ψ0(r1, r2, ε) (199)
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Table 2. The third column shows the Rayleigh–Schrödinger results, the fourth column shows
the results of Kolmogorov’s method, and the fifth column shows the experimental results [22].

Z Ion E0(Z)RS E0(Z)SU E0(Z)exp

2 He −77.1253 −77.0507 −79.003
3 Li II −195.808 −195.805 −198.083
4 Be III −369.125 −369.125 −371.574
5 B IV −596.938 −596.938 −599.502
6 C V −879.205 −879.205 −881.885
7 N VI −1215.91 −1215.91 −1218.741
8 O VII −1607.05 −1607.05 −1610.068
9 F VIII −2052.62 −2052.62 −2055.909

where now

H 0
0 = −

1

2
(1r1 +1r2)−

1

|r1| −
1

|r2| (200)

H 0
1 =

1

|r1− r2| (201)

and all higher-order perturbations are zero (H 0
p = 0, ∀p > 2). The equivalent eigenvalue

problem (199) is now treated in perturbation theory. Unfortunately the computational
resources at hand did not permit the explicit evaluation of the eigenvalue expansion
according to Kolmogorov’s algorithm in this problem in the case of matrices of dimensions
larger than six. The main reason for this is the growth of memory requirement for
Mathematicaif the ε-dependent eigenvalues of matrices of dimensions larger than three
are to be evaluated.

For the ground-state energy,E0(ε), of the equivalent problem one finds in Rayleigh–
Schr̈odinger perturbation theory

E3
0(ε)RS = −1+ 0.625ε − 0.051 279ε2− 0.045 3062ε3− 0.033 3645ε4− 0.017 717ε5

−0.001 82935ε6+ 0.010 5439ε7 (202)

whereas Kolmogorov’s perturbation theory yields

E3
0(ε)SU = 0.000 988 718(−2.09906+ ε)(−0.963 952+ ε)(−0.785 025+ ε)

×(3.834 48− 3.198 94ε + ε2)(0.973 851− 1.940 77ε + ε2)

× (7.779 92+ 1.672 84ε + ε2)(16.7351+ 8.079 92ε + ε2)

(−1.010 16+ ε)2(−0.865 025+ ε)2 (203)

which up to the order of 7 has exactly the same series expansion asE0(ε)RS in (202) and
thus does not give results that differ too much for the ground-state energy,E0(Z), of two-
electron atoms as is evident from table 2 where the two perturbation theories are compared
with the experimental results. So for this limited size of matrices and up to an order of 7 the
new perturbation method performs slightly worse than the standard Rayleigh–Schrödinger
theory which in turn is not as good as the variational method for such systems [20]. The
weak results forZ = 2 andZ = 3 in table 2 with Kolmogorov’s method are due to the
double pole ofE3

0(ε)SU at ε = 0.865 025. For the exited energies one finds a similar
situation: whereas forZ > 3 Kolmogorov’s method yields good approximations a double
pole atε = 0.489 689 leads to very bad results forZ = 2.
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5. Conclusion

5.1. Discussion and comparison with other methods

The question which has been answered affirmatively in this paper was: is it possible
to construct a quantum mechanical version of the perturbation algorithm used in the
classical KAM theorem? The perturbation method for self-adjoint operators presented here
is constructed in complete analogy with Kolmogorov’s perturbation theory for classical
Hamiltonian systems. It yields approximations to the eigenvalues and to the eigenvectors of
the perturbed operators which are no longer pure power series expansions in the perturbation
parameter,ε, but expansions in terms of functions (which are rational ones in the non-
degenerate case) ofε. On the purely formal level presented here it is applicable to any
self-adjoint operator and free of any limitations such as space dimensions, form of potentials,
eigenvalues to be considered, etc.

The method is clearly distinct from the standard Rayleigh–Schrödinger perturbation
theory commonly used in such cases. This difference shows up in theε-dependent
denominators in the following way. Approximations to the eigenvalues of the perturbed
operator are given by the eigenvalues ofHn

0 . This operator is a function of theHn−1
p (see

(159)) which in turn is a function of theWn−1
p (see (120) and (123)) which in turn contain

denominators of the typeEn−2
j,α (ε)−En−2

k,β (ε) (see (162)) such that in thenth iteration only
the corrections up ton− 2 are taken into account. This is the reason why up to third order
the current method does not differ from Rayleigh–Schrödinger perturbation theory since
the first-order corrections only start to be taken into account with iterationn = 3 yielding
corrections from the order of 2n−1 = 4 onwards. This is also the reason why we have not
included any systems with zero first-order perturbations in the examples since the difference
to the standard method for the second-order perturbation will be felt only from order of 8
onwards.

Having constructed this perturbation method the next question to be answered is: what,
if any, is its relation to existing methods? Although in the non-degenerate case this
method yields approximations by rational functions or limits thereof (e.g. as in (178))
the expansion method does not give the Padé approximation to the eigenvalue. This
negative statement can be proven by computing all Padé approximants of the order of
(numerator6 9, denominator6 2) of the exact eigenvaluesE3

1(ε)RS in (181) of our two-
dimensional toy model in section 4.1 which shows that none of them matches the rational
functionE3

1(ε)SU in (188) which is the result of the new perturbation algorithm.
A great deal of perturbation methods either deal with techniques for special systems

or are re-summation techniques of the initially divergent Rayleigh–Schrödinger expansion
[19, 23, 24]. In fact, none of the perturbation methods outlined in the books by Bender and
Orszag [19], Morse and Feshbach [25], and Artecaet al [23] or the reviews by Killingbeck
[24] and Simon [26] seem to be related to the method presented in this paper.

5.2. Problems and future work

To put this theory on a rigorous footing one first has to establish criteria for the convergence

of the integrals of the typeG
(F)

in (96) andS(F)(G) in (97) since they are needed to construct
the algorithm. In the case of bounded perturbations, these integrals and limits can be shown
to converge under certain assumptions [27]. The unbounded case needs work.

Of course, the most important question still to be answered is if and how Kolmogorov’s
method converges? Work on this is in progress but from the preliminary results on two-
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electron systems in section 4.3 it seems that poles caused by perturbative level-crossing may
in certain cases impede improvements on convergence over the standard theory. At this
time the numerical results are too scarce and due to the small size of the matrices cannot
be considered convincing evidence. Therefore, more extensive computations with a greater
number of examples that are done to higher orders are needed.

It should be noted that the non-uniqueness appearing in the classical case (see the
remarks after equation (20)) also appears in the quantum analogue. This means that it
might be possible to improve the algorithm presented here by optimizing the choice for the
operatorsWn

p and thus combining the method with some kind of variational technique.
The extension of the new method to time-dependent systems is easier and more

straightforward (at least on the formal level). Here we only need to construct the theory in
strict analogy with the classical theory which is well known. Work on this is in progress.

Kummer and Gompa [4] have used a perturbation expansion modelled on the classical
normal form method to derive rigorous bounds on the quantum mechanical time evolution
and recently Delshams and Gutiérrez [28] have exhibited the close relationship between the
classical KAM theorem and Nekhoroshev-estimates on the classical time evolution. Using
the method presented in this paper it is perhaps possible to get better Nekhoroshev-type
estimates for quantum systems.
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